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We prove necessary and sufficient conditions for X to be a Chebyshev subspace
of (L, ffi R)OCJ' Moreover, we find a nontrivial Chebyshev subspace of (L, ffi cO)OCJ
when the scalar field is that of the complex numbers.

1. INTRODUCTION

Let F be any Banach space and E a subspace of F. An element e of E is
called a best approximation ofI in E if and only if it satisfies

lie - 111= inf lie' - III·
e'EE

E is an existence subspace of F if for every I in F there exists at least one
best approximation of I in E. E is a uniqueness subspace of F if for every I
there exists at most one best approximation e of I in E. E is called a
Chebyshev subspace if E is both an existence and a uniqueness subspace, If
E is a Chebyshev subspace, then we can define a function P from F into E
such that P(/) is the best approximation of I in E. P is called the metric
projection. It is known that there exists a nonseparable Banach space which
has no proper Chebyshev subspace. But whether there exists a separable
Banach space with no proper Chebyshev subspace is still an open question
(see [8,p.31]). It has been conjectured that (LlffiR)oo with the norm
11(/, a)11 = max {\I/11l' \al} has no proper Chebyshev subspace, where L I is
the space of all real integrable functions on [0, 1]. In this article, we find
necessary and sufficient conditions for (L I ffi R)oo to have a Chebyshev
subspace. Namely, (L I ffi R)oo has a nontrivial Chebyshev subspace if and
only if L 1 has two Chebyshev subspaces Y and Z such that Y is a hyper­
plane of Z. We do not know whether the real L I has these properties. Also, a
similar result is true if the real (L 1 ffi R)oo is replaced by the complex
(L 1 ffi C)oo' It is known that Hi' the Hardy space, and Jtf, the space of
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functions in HI with mean zero, are Chebyshev in L( [2]. Hence, (L( EB C)oo
has a nontrivial Chebyshev subspace.

It is also well known that L I has no finite dimensional or finite codimen­
sional Chebyshev subspace, and CO' all scalar sequences tending to 0, has no
infinite dimensional Chebyshev subspace. We consider the combination
(L( EB co)oo of L I and CO' We find that (L( EB co)oo still has a Chebyshev
subspace if L I has two Chebyshev subspaces Y and Z such that Y is a
hyperplane of Z. Hence, the complex (L 1 EB co)oo has a Chebyshev subspace.

2. BASIC LEMMAS

Let K denote either R or C. First we recall some elementary and well­
known facts which we use in the sequel.

FACT 1. Let F be a Banach space and II . II be the norm of F. Then II . II
is a convex function. Furthermore,

(i) Iff, g and h in F and 0 <Y < 1 such that g = yf + (1 - y)h then
II gil ~ y Ilfll + (1 - y) Ilhll ~ max(llfll, Ilhll)·

(ii) If f, g and h satisfy the above condition and II gil> IlfII, then

Ilhll > Ilgll > Ilfll·

(iii) If II gil < II g + ifll for some c> 0, then II g + c'fll > II g + cfll >
II gil for all c' > c.

FACT 2. Let E be subspace of E and e in E. Then e is a best approx­
imation in E of f if and only if°is a best approximation of c(f - e) for any
c=l=O.

Let (E EB K)oo be the set {(f, A) I fEE and A E K} with the norm
II (f, ..1.)11 =max(llfll, IAI). Here K denotes either R or C. If X is a subspace of
(E EB K)oo' then Y and Z are defined as

Y= {fl (f,O)EX}

and

Z = {f 13..1. E K such that (f, A) EX}.

P is the metric projection from (E EB K)oo into X if X is Chebyshev, and pi is
the metric projection from E into Y when Y is Chebyshev.

LEMMA 1. If X is a nontrivial Chebyshev subspace of (E EB K)oo then

(i) (0, 1) is not in X.
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(ii) Y is different from Z.

(iii) The best approximation of (0, 1) in X is not of the form (f,0).

Proof Suppose that (0, 1) is in X. Because X is a proper subspace of
(E tB K)w' there exists a non-zero element (f,).) EX. By Fact 2, we can
suppose that its best approximation is (0,0). Since

11(f, A) - (0, ,1.)11 = 11(f, 0)11 = Ilfll ::;;;; 11(f, ,1.)11

and (0,0) is the best approximation of (f, A), (0, A) = (0, 0). Hence, ,1.=0.
On the other hand,

11(f, 0) - (0, Ilfll)ll = 11(f, -llfll)11 = Ilfll,

so (0, IIfll) is a best approximation of (f,0). Hence, Ilfll = 0. But this
contradicts our assumption that (f, A) =1= (0,0). Therefore, (0,1) is not in X.
This proves (i).

Suppose that Y = Z. Then (0,0) is a best approximation of (0, 1) in X
because X = {(f, 0) IfEY} and 11(0, 1) - (f, 0)11 = 11(-f, 1)11 ~ 1. Since X is
nontrivial, there exists f =1= °such that (f, 0) E X. For °<c < Illlfll,

11(0,1) - c(f, 0)11 = II(-cf, 1)11 = 1.

Hence, (cf, 0) is another best approximation. This contradicts the fact that X
is a Chebyshev subspace. Therefore, Y is different from Z.

By (ii), Z =1= Y, so there exists g in X such that (g, 1) is in X. If
0< c <min(I/II gil, 1), then 11(0, 1) - c(g, 1)11 < 1. But

11(0,1) - (f, 0)11 = II(-f, 1)11 ~ 1.

Hence, the best approximation of (0, 1) cannot be of the form (f,O). I
Remark 1. If X is Chebyshev, then Y is a hyperplane of Z.

LEMMA 2. Suppose that X is a nontrivial Chebyshev subspace of
(E tB K)w. (0, 0) is the best approximation of (h, A) E (E tB K)w in X if and
only if h and A satisfy the following conditions:

(i) IIhll~IAI.

(ii) .if II h II > IAI then °is the unique best approximation of h in Z (so
in Y).

(iii) Ifllhll = 1,1.1, then

(a) °is the unique best approximation of h in Y.

(b) .if (g, 1) in X and II h + cg II ::;;;; II h II for some c =1= 0, then Ic + AI>
lei·
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Proof Suppose that IAI > Ilhll. Without loss of generality, we can
suppose that A> 0. Otherwise, we can consider (sgn X)(h, A). By Lemma 1,
there exists (g,1) in X. If O<c«A-llhID/llgll, then IIh-cgll~llhll+

Ilcgll < A. Hence, for 0 < c < min«A -II h11V11 gil, A),

II(h, A) - c(g, 1)11 = max(llh - cgll, IA - cD < A.

This contradicts the fact that (0,0) is the best approximation of (h, A).
Hence, Ilhll ~ IAI. This proves (i).

Suppose that Ilhll > IAI. For each g' in Z, there is a in K such that (g', a)
in X. If 0 < Icl < (1Ihll-IAI)fIal, then

IA - cal ~ IAI + Ical ~ Ilhll·

Therefore, if °< lei < (1Ihll-IAIVlal, then

II(h, A) - c( g', a )11 = max(11 h - cg' II, IA- ca I) > II(h, A)11

=llhll·

But Ilhll > IA - cal, so Ilh - cg' II> Ilhll. Hence, °is the unique best approx­
imation of h in Z. Conversely, suppose that 0 is the best approximation of h
in Z. For IAI < Ilhll and (g, a) in X,

II(h, A) - (g, a)11 = II(h - g, A- a)11

~llh-gll

> Ilhll = II(h, A)II·

So (0,0) is the best approximation of (h, A) in X.
Suppose that II h II = IAI. Then for g' in Y and g' *0,

II(h, A)II < II(h, A) - (g', 0)11

= max(11 h - g' II, IAI).

Hence, II h II < II h - g'll, and °is the best approximation of h in Y. Now,
suppose that (g, 1) is in X and Ilh +cgll < Ilhll for some c*O. Then

II(h, A) + c(g, 1)11 = II(h + cg, A+ c)11

> II(h, A)II = Ilhll = IAI·

Since Ilh + cgll ~ Ilhll, IA + cl > IAI. The converse direction is trivial. I
Remark 2. If X is a uniqueness subspace, then Z is a uniqueness

subspace of E.
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Now, we suppose that X is a Chebyshev subspace of (E EEl K)oo' and h is a
fixed element in E. Let A I (A) be a function from K into K which satisfies

Define, for A in K,

l5(A) = dist«h, A), X).

A ball about ,10 with radius r is {A E K: 1,10 - AI ~ r}, that is, a disc if K = C
and an interval if K = R. For any ,10 in K, define its canonical ball

Then we have that (i) ,10 E CB(Ao); (ii) l5(A) ~ l5(Ao) for all A in CB(Ao);
(iiiPo is in the interior of CB(Ao) if and only if

Proof Part (i) follows the definition of CB(Ao) and (ii) follows from the
fact

II(h, A) - (fAo' A I(Ao))ll = max(llh - fAolI, IA -AI(Ao)l)

= II h - fAol1 = l5(Ao)'

Suppose that Ao is in the interior of CB(Ao)' Then there exist Al and ,12 in
CB(Ao) such that Ao = HAl + ,12)'

l5(Ao) ~ lI(h, A) - H(fA" A I(AI» + (fA2' A 1(,12»]11

~ t lI(h, AI) - (fA" A I(AI))II + t II(h, A2) - (fA2 , A I(A 2))11

= tl5(A I) + tl5(A2)

~ l5(Ao)'

Hence, l5(Ao) = l5(AI) = l5(A 2). Since X is Chebyshev,

(fA" AI(A I» + (fA 2 , A 1(,12» = 2(fAo' A 1(,10»'

We have

II(h, AI) - (fAo' A 1(,10))11 = max(ll h - fAoll, 1,11 - A 1(,10)1)

= II h - f.1.ol1 = 0(,10) since Al E CB(Ao)'



52 PEI-KEE LIN

Hence, (f.,\o' A I(Ao» = (f.,\" A I(AI))' Similarly, (f.,\o' A I(Ao)) = (f"\2' A (A 2))·

Therefore,

lAO - A I(Ao)1

= IHAl - A I(Ao» +!(A2 - A I(Ao»1

< max(1 Al - A I(Ao)l, 1A2 - A I(Ao)!)

:s;; O(A I ) = O(Ao) = 0(A2 )· I

since K is strictly convex
and Al *A2

LEMMA 3. A I is continuous.

Proof Let M= {AoEK: O(Ao) =info(A)}. Since 0 is a continuous and
convex function, M is closed and convex. For any Ao in K, define a sub-level
set

CLAIM (1). If Ao is not in M, then CB(Ao) is the only ball of radius O(Ao)
containing Ao and contained in L(Ao)'

Proof of (1). That CB(Ao) S; L(Ao) is clear. Suppose that B is another
ball of the same radius containing Ao and contained in L(Ao)' Then
cO (B U CB(Ao»has Ao in its interior. By convexity of 0, 0 is constant on
some small ball contained in L(Ao) and hence Ao is in M. This proves (1).

CLAIM (2). A I is continuous on K - M.

Proof of (2). Suppose not. Then there exist An--tAo~M with AI(An)--t
Zo *A I(Ao)' Of course O(An) --t O(Ao)' Let B be the open ball of radius O(Ao)
and center Zoo We claim that B is a subset of L(Ao)' Suppose that A is in B.
Let n be large enough so that 10(An)-0(Ao)1 <1(o(Ao)-IA-Zo!)' and
IAI(An)-zol <1(o(Ao)-IA-Zo!)' Then

IA -A(An)l:S;; IA - zol + IAI(An) - zol

:s;; IA - zol +1(O(Ao) -IA - zol)

:s;; O(Ao) - ~(O(Ao) -IA - zol):S;; O(An)·

Hence, AE CB(An). But CB(An) is a subset of L(Ao)' So B is a subset of
L(Ao)' Since limn~CX) An = A, limn~CX) A I(An) = Zo and limn~CX) O(An) = O(Ao), Ais
in the closure of B. By the proof of (1), Zo = AI(Ao)' We get a contradiction.
This proves (2).

CLAIM (3). M * 0.
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Proof of (3). Let c(g, 1) be the best approximation of (0,1) in X. (Note:
By Lemma 1, the best approximation of (0, 1) in X is not of the form (f, 0).)
By Lemma 2, 0 is the approximation of g in Y. For any A> II h II + 411 h II/II gil
and (g', a) in X,

II(h, A) - (g', a)11

= max(11 h - g' II, IA- a I)

~ max(ll g'II-llhll, IAI-Ial)

~ max(lalll gll-llhll, IAI-Ial)

~ II h II = II(h, 0)11·

since (g', a) = a(g, 1) + (f,0)
and 0 is the best approxi­
mation of g in Y

Since r5 is a convex function, it attains minimum at some point inside the
circle with center 0 and radius II h II +4 II h II/II g II. Hence, M is nonempty.

CLAIM (4). M is a ball of radius r5(Ao)' where Ao is any point of M.

Proof of (4). Let AoE M. We show that M = CB(Ao)' Surely,
CB(Ao)~ M. Suppose that Al is in M - CB(Ao)' We may assume that the
distance e from A( to CB(Ao) is less than, say, (10- 6

) r5(Ao)' Let A be any
point on the line segment from Al to its nearest point A2 in CB(Ao)' If the
interior of CB(A) intersects the interior of CB(Ao), then (fAo' A I(Ao)) =
(fA! ' A I(A)) by the proof of property (iii) of CB(Ao)' But IA - A I(Ao)1 > r5(Ao)
if AE CB(Ao). Hence, the interior of CB(A) intersects the interior of CB(Ao) if
and only if A= A2 • Let A be any point between Al and A2 • Since e, the
distance between Al and A2 , is less than (10- 6

) r5(Ao) and the interior of
CB(A) does not intersect the interior of CB(Ao)' Al is in the interior of CB(A).
Hence, we have P(h, A) = P(h, AI) = (fA" AI(A I)). By the proof of the
property (iii) of CB(Ao),.we have

This implies P(h, AI) = P(h, A2). We get a contradiction since Al is not in
CB(Ao)'

CLAIM (5). A ( is continuous.

Proof of (5). A I is constant on M and so only the boundary points of M
otTer any problem. But let Ao be such a boundary point and consider a
sequence of points outside M converging to Ao. Now proceed as in (2).

The proof is complete. I
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COROLLARY 4. If X is Chebyshev, then Z is Chebyshev.

Proof. By Claim (4) and Lemma 2. I

LEMMA 5. A 1 has a root. Hence, X is Chebyshev, and so Y is
Chebyshev.

Proof. Choose a > II h II. Let B denote the all of radius a about O. If
AE B, then <5(A) ~ a. Hence, the function A- A 1(A) maps B into itself. Since
A 1 is continuous, there exists a fixed point, say, Ao• Hence, Al (Ao) = O.

The proof is complete. I

3. MAIN RESULT

In this section, we will prove necessary and sufficient conditions for X to
be a Chebyshev subspace of (E EB K)oo .

THEOREM 1. X is a Chebyshev subspace of (E EB K)oo if and only if
(i) Y is a hyperplane of Z, where Y and Z are defined in Section 2.

(ii) Both Y and Z are Chebyshev in E.

Proof. We proved the necessary conditions in Section 2. Now, suppose
that Yand Z are Chebyshev subspace of E and Y is a hyperplane of Z. For
any (h, A) E (E EB K)oo - X, we can define a function A 2 from K into K by

A 2(a) = II(h, A) - a(g, 1) - (P'(h - ag), 0)11,

where (g, 1) is in X and P' is the metric projection from E into Y. For
o<c < 1 and a, pE K,

A 2(ca + (1 - c)P)

= II(h, A) - rca + (1 - c)P)(g, 1) - (P'(h - rca + (1 - c)Pl g), 0)11

~ II(h, A) - rca + (1 - c)P)(g, 1)

- (cP'(h - ag) + (1 - c) P'(h - pg), 0)11

~ c II(h, A) - a(g, 1) - (P'(h - ag), 0)11

+ (1 - c) II(h, A) - P(g, 1) - (P'(h - pg), 0)11

= cA 2(g) + (1 - c) A/P).
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Hence, A z is a convex function. Let B be a ball about 0 with radius
Ilhll + 31).1. If a' is not in B, then

Az(a') = II(h,).) - a'(g, 1) - (P'(h - ag'), 0)11

~ I). - a'i ~ Ilhll + 21).1 ~Az(O).

Hence, A z attains minimum at some point a in B. We claim that a(g, 1) +
(P'(h - ag), 0) is a best approximation of (h,).) in X. Every element in X has
the form fJ( g, 1) + (y, 0). Hence,

II(h,).)-fJ(g,1)-(y,0)11

~ II(h, A) - fJ(g, 1) - (P'(h - fJg), 0)11

since IIh - fJg - yll ~ Ilh - fJg - P'(h - fJg)11
= Az(fJ) ~Az(a)

= II(h, A) - a(g, 1) - (P'(h - fJg), 0)11.

(ag +P'(h - ag), a) is a best approximation of (h, A). Therefore, X is an
existence subspace.

Given (h, A) in (E EB K)Cf)' by Fact 2 without loss of generality, we can
suppose that (0,0) is a best approximation of (h, ).). By the proof of
Lemma 2, either Ilhll > 1,11 or IIhll = 1,11. If Ilhll > 1,11, then by the proof of
Lemma 2 again, 0 is a best approximation of h in Z. Let (I, a) be a non-zero
element in X. Hence 1#;0. Since Z is Chebyshev, II(h, A) - (I, a)11 ~
II h - III > II h II. (0,0) is the unique best approximation of (h, A) in X. On the
other hand, if II h II = A, then without loss of generality, we can suppose that
A> O. By the proof of Lemma 2, 0 is a best approximation of h in Y. If
(I, a) is another best approximation of (h, A) in X, then a =1= 0 since Y is
Chebyshev. Hence, for any 0 ~ e ~ 1, e(f, a) is a best approximation of
(h, ).).

II(h, ,1)11 = II(h - f, A- a)11

= II(h - ef, A- ea)11
= II h - e/ll by the proof of Lemma 2.

IAI=llhll~IA-al. Since K is strictly convex, IAI>IA-!al. Hence,
II h - !/II = A> I). - !a I. By the above argument, (0,0) is the unique best
approximation of (h -!f, A- !a). Hence, HI, !a) is the unique best approx­
imation of (h, A). We get a contradiction. Therefore, X must be a uniqueness
subspace of (E EEl K)oo'
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Remark 1. X is a uniqueness subspace if and only if one of the
following statements i true.

(i) Y is a hyperplane of E and Z is a uniqueness subspace.

(ii) (0, 1) is in X and Z is very non-proximina/; that is, no elementfin
E - Z has an element of best approximation in Z. In this case, X is very
non-proximinal.

Remark 2. If (L 1 EB K)oo has a nontrivial Chebyshev subspace, then Y
cannot be a sublattice of L 1 •

Proof Suppose that Y is a sublattice of L I' Then there exists a measure
11 absolutely continuous with respect to the Lebesgue measure such that
L 1(E, 11) is isometrically isomorphic to Y. First, we claim that 11 has no
atom: if it is not true, then there exists a I.l-measurable set M such that
I.l(M) >0, XM Y c;; Y has one dimension. XM Y cannot be Chebyshev in L 1(M)
since it is a finite dimensional subspace. Hence, there exists f in L 1(M) such
that there are two elements, say, 0 and h, in XM Y which are best approx­
imations to f. Let

l(x) = f(x)

=0

if xEM

if xEM.

Then 0 and h are best approximations to] in Y since

11](x) - YII ~ Ilf(x) - XMyl1 ~ 11](x)lll'

This contradicts the fact that Y is Chebyshev. Therefore, 11 has no atom.
Suppose that Z is the subspace generated by Y and g, where g is in

pi -1(0). We claim that Z is not Chebyshev. Let M be a I.l-measurable set
such that lAM) = 0 and the Lebesgue measure restricted to the complement
of M is absolutely continuous with respect to /1. Let M 1 and M 2 , two /1­

measurable sets, be a partition of Me such that fM, Ig(x)1 dx = fM21 g(x)1 dx.
This can be done because /1 has no atom. Let M 3 and M 4 be a partition of M
sucE that fM 3 1 g(x)1 dx = fM.I g(x)1 dx. Because XM

j
Y <;: Y, XM2 Y <;: Y and

I.l(M) = 0,0 is a best approximation of aIXM, g +a2XM2g +a 3XM
3
g +a4XM.g,

where a i E K. Let g be defined by

g(x) = g(x)

= - g(x)

Then for -I ~ a ~ I
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I

II g - agll l = f
o

Ig(X) - ag(x)1 dx

= r Ig(X) - ag(x)1 dx + f Ig(X) - ag(x)1 dx
'MtuMJ M 2uM.

= f Ig(X) - ag(x)1 dx +f 1- g(X) - ag(x)1 dx
M,uM J M2UM•

=(l-a)f Ig(x)ldx+(l+a)! Ig(x)ldx
M,UM2 M 2UM.

= f Ig(x)1 dx = f Ig(x)1 dx.
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Hence, II gill = II g - gill ~ II g - fJgllI ~ II g - fJg - ylll for fJ E K and y E Y.
g and °are best approximations of gin Z and Z is not Chebyshev.

Remark 3. If p, is a measure without atoms, then LI(E,p,) has no finite
codimensional Chebyshev subspace. Hence, if X is Chebyshev, then Z is not
a sublattice.

Remark 4. (I am indebted to P. Morris, who showed me a nontrivial
Chebyshev subspace of real L I.) Let G = {f IfELl such that f(x) =
f(x +1) = f(x +n for °~ x ~ 1}. For any hELl [0, 1 j, the best approx­
imation f on h in G is defined by

f(x) = f(x +1) = f(x + j) = h(x2),

where XI' x 2, x 3 are x, X +L x +j such that h(xl) ~ h(x2) ~ h(x3), and °~
x ~ 1. The metric projection is not linear because both XIO,l/3) and XIl/3,1/3)

have °as the best approximation, but X[O.1/3) has X[O,1) as its best approx­
imation. But G is a sublattice; hence, Y cannot be G (respectively, Z cannot
be G) when X is Chebyshev in (L I EB R)oo'

Remark 5. It is known that the Hardy space HI and H:. (all functions in
HI with mean zero) are Chebyshev in complex L I [2]. Hence, (L I EB C)oo
has a nontrivial Chebyshev subspace,

COROLLARY 1.1. Suppose Y is a Chebyshev subspace of E and fp
f2 ,.. " fn E E - Y. If for any subset A of {fl' f2 ,..., fn}' the subspace
generated by YU A is Chebyshev, and Y is an n codimensional subspace of
the generated by Y U {fp f2 ,,.., fn}' then X, the subspace generated by {(I,
(0,0,...,0)) I fEY} and {(Ii, e/) I i = 1,2,... , n}, is Chebyshev in (E EB Kn)oo'
where e/ is the natural basis ofKn.
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Proof. Since (E (£J Kn)oo = «E (£J Kn-1)00 (£J K)oo, by induction it is
enough to prove that n = 2. By assumption, Y is different from the subspace
2 1 generated by Y and fl' and the subspace 2 2 generated by Y and f2 is
different from the subspace 2 3 generated by Y,f1' andf2' By Theorem 1, the
subspace 2 4 generated by {(y,O)1 yE Y}U {(fl' I)}, and the subspace 2 5

generated by {(y, 0) lyE Y} U {(fl' 1), (f2' O)} are Chebyshev in
(E (£J K)oo' Hence, the subspace generated by {(y, 0, 0) lyE Y} U {(ft, 1,0),
(f2' 0, I)} is Chebyshev in (E (£J K2)00' I

4. AN EXAMPLE OF A CHEBYSHEV SUBSPACE OF (L 1(£J co)oo

Since L]([O, (0)) is isometrically isomorphic to L l ([O,I)), we can
consider (L 1([0, (0)) (£J co)oo, where Co is all scalar sequences converging to
zero, and (L l (£J co)oo has the norm Ilf (£J (c,)lloo = max(llflll' II(c,)lloo)' We
need the following lemma.

LEMMA 6. If Y, is a Chebyshev subspace of Xi' then «(£J Y')I, is a
Chebyshev subspace of «(£J Xal!' Indeed, for (XI) E «(£J XJI, if y, is the
approximation of Xi in Yi' then (YI) is the best approximation of (XI) in

«(£J Y')l,·

Proof. Since Ily,11 ~ 21Ix,ll, (yJ is an element of «(£J YI)I,' Suppose that
(yD E «(£J YI)l J

and (yD '* (yJ Then

00
!I(x/ - yD11 = I II x, - y; II

/=1

00
> I Ilx/- y,11

i=1

Hence, «(£J Y')I, is a Chebyshev subspace of «(£J XJ1,· I

EXAMPLE. Let X be the space of pairs f (£J (P,), where the restriction off
to [n - 1, n1is in HI for each n and where

,
PI = 5 f(x) dx

'-I
for all i.

Then X is a Chebyshev subspace of (L]([O, (0)) (£J co)oo'
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Proof It is easy to see that X is a closed subspace of (L I (±) co)oo' Let Z
be the space

{flflln-I,n) is in HI for all n} (after shift).

By Lemma 6, Z is a Chebyshev subspace of L I • Given g(±) (a;) in
(L I (±) c0)00' without loss of generality we can suppose that 0 is the best
approximation of g in Z. If g (±) (a;) = 0 (±) 0, then it is done. Hence, we can
suppose that either g i= 0 or there exists n such that an i= O. Let N e large
enough such that for any i >N, we have! II gill ~ lail if g i= 0 od lanl ~ la;1
if g = O. Let YN be the space of pairs f (±) (fl;) such that the restriction off
to [i - 1, i] is in HI if i ~ N, and the restriction is 0 if i >N, and

;

fl; = r f(x) dx
';-1

for all i.

By Corollary 1.1 of Theorem 1 and Lemma 6, YN is a Chebyshev subspace
of (L 1[0, N) (±) CN)oo' Let f (±) (fl;) be the best approximation of g (±)

(a p a2,..·, aN) in YN.

CLAIM (1). Ilg-flll > la;lfor i>N.

Proof of (1). Since 0 is the best approximation g in Z, II g - fill ~ II gill'
Hence, if Ilgllli=O, then Ilg-flll~llgIII>la;1 for i>N. So we can
suppose that g = O. Since f~-I f(x) dx = fln, Ilfll ~ Ifln I. On the other hand,
since 0 (±) 0 is the best approximation of (g - f, (a l - flp a2- fl2 ,... ,
aN - /3N))' by Lemma 2,

since g = O.

Hence, 211fll ~ Ian - flnl + Iflnl ~ lanl > 21a;1 for i >N.

CLAIM (2). f(±) (/3pfl2, ...,flN' 0, 0,... ) is the best approximation of g(±)
(a;).

Proof of (2). Let h (±) (y;) be any element in X. Then

h (±) (y;) = hX[O,N) (±) (YI' Y2"'" YN' 0, 0,... )

+ hX[N,oo) EB (0,0, ... ,0, YN+p YN+2"")'

If h (±) (y;) i= f EB (/31' /32 ,..., flN' 0, 0,... ) then either

(1) hXrO,N) (±) (Yi' Y2 ,..., YN' 0, 0,... ) i= f EB (fli' fl2 ,..., flN' 0, 0,... )

or

(2) hX[N,oo) EB (0,...,0, YN+ I' YN+ 2 , ... ) i= 0 EB (0, 0,... ).
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Suppose that (1) is true. Since I (B (PI' P2 ,...,PN) is the best approximation
of g (B (ai' a 2 , ... , aN) in YN, either II g - IIII < II g - hX[O,N) III or there exists
1 ~ m~ N such that II g - IIII < lam - Yml. If Ilg - IIII < lam - Yml, then

II g (B (a p a2,...) - I (B (PI' P2 ,...,PN' 0, 0,.. ·)11
=llg-/111
<Iam-Yml
~ II g (B (a p a 2 , .. ·) - h (B (yp Y2,·..)II·

If II g - 1111 < II g - hXrO,N) III then

II g- IIII < II g- hX[O,N) III
= II(g - h) X[O,N) III + II gX[N,CX) III
~ II(g - h)x[o,N) III

+ II gX[N,CX) - hX[N.CX) III since by Lemma 6,°is the best approximation
of gX[N.CX) in Z

Hence,

II g (B (ai' a2 ,· .. ) - h (B (YI' Y2,· .. )11
< II g (B (ai' a2,·.. ) - I (B (PI' P2'"'' PN,0, 0,· .. )11·

If (1) is not true, then (2) must be true. And it implies hX[N,CX)) -=1= 0. Hence,

II g - III = II gX[O,N) - hX[O,N) III + II gX[N.CX) III
< II gX[O.N) - hX[O.N) III + II gX[N,CX) - hX[N.CX) III
=llg-hll l ·

Hence, I (B (PI' P2 '''', PN' 0, 0,... ) is the unique best approximation of g (B
(a p a v ''') in X. X is Chebyshev. I

Remark 1. If the real L I has two Chebyshev subspaces Y and Z such
that Y is a hyperplane of Z, then by the above method we can construct a
Chebyshev subspace of (L I (B cO)CX) •

Since the unit ball of L I has no extreme point, L I has no coreflexive
Chebyshev subspace. But we do not know whether L I has a reflexive
Chebyshev subspace. It is also conjectured that (L I (B L I (B L I (B "')CX) has
no Chebyshev subspace. We have the following open problem.
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PROBLEM. Does (L I ffiLI)ro have a nontrivial Chebyshev subspace?
Find necessary and sufficient conditions for X to be a Chebyshev subspace
of (L I ffiLI)ro'

Remark 2. Suppose that X is a Chebyshev subspace of (L I E8 L 1)00' Let

Y I = {f I(f, 0) E X}, and ZI = {f 13g E L I such that (f, g) EX},

Y2= {f 1(0,1) E X}, and Z2 = {f 13g E L I such that (g, I) EX}.

Then (i) ZI and Z2 are uniqueness subspaces; (ii) If Y I *- {Of (respectively
Y2 *- {OD, Z2 (respectively ZI) is very non-proximinal. (ZI or Z2 may not be
closed.) (iii) If 0 ffi 0 is the approximation of I ffi g in X and 11/111> II gill
(respectively /I gill> 11/111)' then 0 is the best approximation of I
(respectively, g) in Z I (respectively Z2)' If there exists an element I ffi g with
the above property, then Y2 = {Of (respectively Y 1 = {Of).

Remark 3. L 2 [0, 1] has an infinite dimensional subspace E such that for
any lEE we have /1/112> 1011/111' It is known that L 2 [0, 1] with the new
norm

IIIIIII = max{II/III' j 11/112}

has no finite dimensional Chebyshev subspace. But

E~ = {g I<I, g) = 0 for all lEE}

is a Chebyshev subspace of (L 2 [0, 1], III . III). Particularly, for each lEE, 0
is the best approximation off in E~.

Proof Let lEE. Then

1/1/111 = max{II//lI' j/l/112} = j /11112'

For any gE E\

So we have 1111+ gl/l > 111/111, and E~ is a Chebyshev subspace of
(L 2 [0, 1],111·1/1)·

We claim that for any separable infinite dimensional Banach space F,
((L 2 [0, 1], III . III) ffi F)ro has a Chebyshev subspace.

Proof Let II '/2"" be a orthonormal basis of E with the norm II . 112 and
gI' g2"" be linear independent such that span{gl' g 2 , ... } = F. Let X be the
subspace generated by {(f, 0) II E E~} U {(/;, gi/n211 gill), i = 1,2,... }. Since
X is isomorphic to L 2 [0, 1], it is an existence subspace.
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CLAIM (1). If (0, 0) is a best approximation of (f, g), then Illflll >II gIIF'
Proof of (1). Suppose that II gilF > IlIflll· Since span{ gl' g2'oo,} = F, there

existf' E L 2 [0, 1] and g' E F such that (f', g') E X and II g- g' IIF < 111 giIF'
If °< c < min(l, (II gilF -lllflll)/21111' 111), then

11(f, g) - c(f', g')11 < II giIF'

This contradicts the fact that (0,0) is a best approximation of (f, g) in X.

Hence, Illflll >II giIF'

CLAIM (2). X is a Chebyshev subspace of «L 2 [0, 1], III· III) (B F)oo'

Proof of (2). Suppose not. Let (0,0) and (f', g') be two best approx­
imations of (f, g) in X. Hence,

Illflll = IIIf - I' III = 11(f, g)ll·

Since {(f, 0) If E E1-} is contained in X, f and f - I' belong to E and

IIfl12 = Illflll = Ilif - I' III = Ilf - I' 112' But 1(1', g') is another best approx­
imation of (f, g) in X; hence,

Ilf -11' 112 = Illf -11' III
=llflb
= Ilf - 1'112'

This contradicts the fact that (L 2(0, 1), II . 112) is strictly convex. So X is
Chebyshev. I

Hence, «(B (L 2 [0, 1], III· 111»co has a Chebyshev subspace.
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